註 達 化 學 股 份 有 限 公 司 CHANDA CHEMICAL CORP.

Devin Yen

Introduction of CHANDA

簡

酯化產品的專家

An Expert of Esterification

Polyester Polyol, Ester-Ether Copolyol, Plasticizers, Di/Tri-amines Prepolymers, Polyurea....

Our International Business Partners:

♦ We provide our excellence products and solution to many famous international PU manufacturers.

誠信、品質、創新 Integrity Quality Innovation

> A (PM)² COMPANY Product Management × Product Marketing

Polymer Technologies Manufacture Technologies

• 產能 Capacity:

Synthetic Resin: 1,200MT/ Per Month

Blending: 550MT/Per Month (OEM for GE TW)

- 創立 Established: 2004
- 資本額 Capital: NT\$100,500,000
- 認證 Certifications: ISO 9001/14001, OHSAS 18001, NSF

HQ Address: F7, No.288, MingSheng W. Rd, Taipei, Taiwan Employees: 5

Factory Address: No10, LuGong N1st. Road. LuGang Town, ZhangHua Coastal Industrial Park Employees: 27

Chanda's Products

- Hi-Tech Polyester Polyol
- Ester-Ether Copolyol
- Di/Tri Amines Prepolymer
- Polyurea (in Developing)

Hi-Tech Polyester Polyol

• What's the Polyol?

• What's the Polyester polyol?

• Which Polyester polyol we provide?

What is the Polyol?

- Polyester Polyol
- Polyether Polyol
- Others,

Table 3.1 The oligo-polyols MW values function of the functionality (f)										
Oligo-polyol type MW value										
Diols $(f - 2)$	112200/OH#									
$\frac{D(0)S(f-2)}{Triols(f-3)}$	168300/OH#									
Tetraols $(f - 4)$	224400/OH#									
Here $f(f = 6)$	336600/OH#									
1100000000000000000000000000000000000	448800/011#									
Octols (f = 7)	448800/OH#									

where:

= a chemical organic structure, aliphatic, cycloaliphatic, aromatic, heterocyclic etc.

•••• OH = terminal hydroxyl group

n = the number of chains derived from one hydroxyl group

f = n + 2 (the total number of hydroxyl groups/mol=functionality)

What's Polyester Polyol?

(1)

(2)

(3)

Dimethycarbonate

Table 8.1 The most important diols and triols used for polyester polyol synthesis											
No.	Polyol	Formula	Hydroxyl number, mg KOH/g								
Diols											
1	Ethyleneglycol (EG)	HOCH ₂ CH ₂ OH	62.07	1807.6							
2	Diethyleneglycol (DEG)	(HOCH ₂ CH ₂) ₂ O	106.12	1057.2							
3	1,2 Propyleneglycol (PG)	HOCH ₂ CH(CH ₃)OH	76.10	1474.3							
4	1,4 Butanediol (BD)	HO-(CH ₂) ₄ -OH	90.12	1245.0							
5	Neopentyl glycol (NPG)	$(CH_3)_2C(CH_2OH)_2$	104.0	1078.8							
6	1,6 Hexanediol (HD)	HO-(CH ₂) ₆ -OH	118.18	949.3							
Triol	ls										
1	Glycerol	(HOCH ₂) ₂ CHOH	92.10	1827.3							
2	Trimethylolpropane (TMP)	(HOCH ₂) ₃ CCH ₂ CH ₃	122	1379.5							

Tal	Table 8.2 Aliphatic dicarboxylic acids used for polyester polyol synthesis										
No.	Dicarboxylic acid	Formula	MW, daltons	Acid number, mg KOH/g							
1	Adipic acid (AA)	HOOC(CH ₂) ₄ COOH	146.14	767.78							
2	Glutaric acid	HOOC(CH ₂) ₃ COOH	132.12	849.2							
3	Succinic acid	HOOC(CH ₂) ₂ COOH	118.09	950.1							
4	Sebacic acid	HOOC(CH ₂) ₈ COOH	202.0	555.4							
4	Azelaic acid	HOOC(CH ₂) ₇ COOH	186.0	603.2							

Та	Table 8.3 Aromatic dicarboxylic acids and derivatives used for polyester polyol synthesis										
No.	Dicarboxylic acid	Formula	MW, daltons	Acid number, mg KOH/g							
1	Isophthalic acid (IPA)	ноос	166.13	675.3							
2	Phthalic anhydride		148.12	757.4							
3	Terephthalic acid	ноос-Соон	166.13	675.3							

nHO-C-R-C-OH + (n+1)HO-R-OH and an analysis and a catalysis and a cataly
$HO-R'-O\left[-\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}$
Normal
HO-R-OH + $2x \begin{pmatrix} 0 \\ C-0 \\ (CH_2)_5 \end{pmatrix}$ catalyst ϵ -caprolactane
$H \left[-0 - (CH_2)_5 - C - \frac{0}{x} - 0 - R' - 0 - C + \frac{0}{C} - (CH_2)_5 - 0 - \frac{1}{x} \right]$
Poly ε-caprolactane
$nCH_{3} O - CH_{3} + (n+1) HO - (CH_{3})_{6} OH $

1,6 hexandiol

HO-(CH₂)₆-O- $\left[\begin{array}{c} O \\ C \\ C \\ -R \\ - \end{array} \right] - O-\left(\begin{array}{c} O \\ C \\ -R \\ - \end{array} \right) - O-\left(\begin{array}{c} C \\ C \\ -R \\ - \end{array} \right) - O-\left(\begin{array}{c} C \\ C \\ -R \\ - \end{array} \right) - O-\left(\begin{array}{c} C \\ -R \\ - O-\left(\begin{array}{c} C \\ -R \\ - \end{array} \right) - O-\left(\begin{array}{c} C \\ -R \\ - O-\left(\begin{array}{c} C \\ -R \\ - O-\left(\begin{array}{c} C \\ -R \\ - \end{array} \right) - O-\left(\begin{array}{c} C \\ -R \\ - O$

Polycarbonate diol

(1) Quality Enhanced

Hot water degrade test within 12hrs @ 90°C (10% Water +90% Polyol)

Which Polyester Polyol we provide?

(2) Design for The PU Applications: <u>F C A S E</u>

Coating

Adhesive

Sealant

No Suggestion

Elastomer

CA2410 CA2420 Injection Type

CA4010 CA4020 Film Type

CA4030 CA4040 (PU - HMA PU

CA1037D PU - HMA Rapid PUR

* And some new designs for Low Application Temperature PU HMA.

Ester-Ether Copolyol

• What's the Ester-Ether Copolyol?

- Why Ester-Ether Copolyol?
- What Ester-Ether Copolyol we design for?

Chanda

(1) Chemical Structure:

 $\begin{array}{c} O & O \\ \parallel \\ H_{\overline{z}}(O_{2p}HC_{\overline{p}}C) - O - (C_{n}H_{2n}O)_{x} - (C_{m}H_{2m}O)_{\overline{y}}H \end{array}$

(2) Contents:

Core : Ether Prepolymer PEG/PPG/PTG, 2~3 Functions

Side Chains: Ester Prepolymer

(3) Crystalline + Amorphous

(4) Breathable evaporating Absorbing

And design for the PU Foam:

Di/Tri Amines Prepolymer

• What's the Polyether Di/Tri-Amines?

Which Polyether-amines we provide?

(1) Polyether Di-amine

$${}_{2}HN - (C_{m}H_{2m}) - (C_{m}H_{2m}) - (C_{m}H_{2m}) - O = \int_{X}^{O} (C_{m}H_{2m}) - (O_{m}H_{2m}) - (O_$$

(2) Polyether Tri-amine

If we used the tri-functional polyether in core, we can get polyether tri-amines.

- 1. One Component for PolyUrea Resin/Paint
- 2. One Component for Polyamide Resin/Plastic/Fiber
- 3. Curing agent for Epoxy resin

Which Polyether di/tri-amines we provide?

- 1. With PTG core, di-functional , Mw 250, 650, 1000, 2000
- 2. With PPG core, di/tri functional, Mw 300 ~ 5000

Products list

酯 多 元 醇 產 品 表

Chanda

Product List of Polyester Polyol

Crystal / Semi-Crystal Type

	Applications											Specfication			
品名	Co	ating	Adhesives			Elastomers				Contents	VISCOSITY	Hydroxyl	Acid	Mw	Color
	Ink	Paint	HMA	PUD	PUR	Pipe	Block	Roller	Wire		@ 00 C	KOH mg/g	KOH mg/g	Ave.	Alpha,Max.
CA2420	~	1						1	1	AA+BDO+EG	400	56.1	< 0.3	2,000	30
CA2430	1	1			1			1	1	AA+BDO+EG	950	37.4	< 0.3	3,000	30
CA4007	1	1					1			AA+BDO	60	160.3	< 0.3	700	30
CA4010	1	1				1	1	1		AA+BDO	150	112.2	< 0.3	1,000	30
CA4020				1	1	1	1	1	1	AA+BDO	550	56.1	< 0.3	2,000	30
CA4030			1	1	1					AA+BDO	1,200	37.4	<0.3	3,000	30
CA4040			1	1	1					AA+BDO	2,500	28	< 0.3	4,000	30
CA4050			1	1	1					AA+BDO	6,000	22.4	< 0.3	5,000	100
CA6440-N			1	1	1					AA+BDO+MPO	1,800	28	<0.5	4,000	50
CA1030			1	1	1					AA+HDO	800	37.4	<0.5	3,000	50
CA4030D			1	1	1		1		1	Fatty Di-Acid+BDO	1,100	37.4	<0.5	3,000	100
CA1037D			1	1	1					Fatty Di-Acid+HDO	2,000	30	<0.5	3,700	100
CT1010		1		1	1	1	1	1	1	Copolyol	280 (60°C)	56.1	< 0.05	2,000	50

• We can provide more products and accept customer's designs (customization) for more detail please contact us by mail: devinyen@chanda.com.tw

• Above data for reference, please check from single product TDS for more detail spec.

聚

Name Rule: CA- abcd	Contents:
CA = Titanic Catalyst	AA = Adipic aci
a : 1=HDO, 2=EG, 4=BDO, 5=DEG, 6=MPO	EG = Ethylene
b: 0= single diol, 1~6 same as "a"	DEG = Diethyle
cd=Mw; 10=Mw1,000 20=Mw2,000 ;;;;;	BDO = 1,4-Buta
End-Mark= D or I or T another Di-Acid complex	MPO = 2-METH
CB = Tin catalyst	HDO = 1,6-Hex
CT = PET + PTMEG co-polyol	
CP= PET + PPG co-polyol	
CE = PET + PEG co-polyol	

A = Adipic acid EG = Ethylene Glycol DEG = Diethylene glycol BDO = 1,4-Butanediol MPO = 2-METHYL-1,3-PROPANEDIOL IDO = 1,6-Hexanediol

Applications: HMA = Hot melt Adhesive PUD = Water Base PU Distribution PUR = Solvent base PU Resin Block = Block type Plastic ISO = pre-Polymer with isocyanate end UV = Ester type acrylic oligomer Flexible = Flexible / Soft Foam

列

詮達化學股份有限公司 www.chanda.com.tw +886 2 2550 8345

聚 酯

酯 多 元 醇 產 品 表

Chanda

Product List of Polyester Polyol

Amorphous Type

	Applications									Viceosity	Specification			
品名	Co	ating	Adhesives			Sealants	s/Foaming	Contents		Hydroxyl	Acid	Mw	Color	
	Ink	Paint	HMA	PUD	PUR	UV	ISO	Flexible		Q 25 C	KOH mg/g	KOH mg/g	Ave.	Alpha,Max.
CA5010	1	1		1		1	1		AA+DEG	1,600	112.2	<0.3	1,000	30
CA5020	1	1		1			1		AA+DEG	5,100	56.1	< 0.3	2,000	30
CA6010	1	1		1	1	1	1		AA+MPO	3,000	112.2	<0.3	1,000	30
CA6020	1	1	1	~	1		1		AA+MPO	13,000	56.1	<0.3	2,000	30
CA6040	1	1		~					AA+MPO	76,000	28	<0.5	4,000	100
CA6050	1	1		1					AA+MPO	123,000	22.4	<0.5	5,000	100
CA6410	1	1			1	1		1	AA+MPO+BDO	2,100	112.2	<0.3	1,000	30
CA6420			1		~				AA+MPO+BDO	10,000	56.1	<0.3	2,000	30
CA1610-i	1	1	1	1	1	1	1	1	Complex Content	1,900	112.2	<1.0	1,000	100
CA1620-i	1	1	1	1	1	1	1	1	Complex Content	9,300	56.1	<1.0	2,000	100
CA1640-i	1	1	1	1	1		199		Complex Content	50,000	28	<1.0	4,000	100
CA1650-i	1	1	1	1	1				Complex Content	94,000	22.4	<1.0	5,000	100

• We can provide more products and accept customer's designs (customization) for more detail please contact us by mail: devinyen@chanda.com.tw

Above data for reference, please check from single product TDS for more detail spec.

Name Rule: CA- abcd	Contents:	Applications:
CA = Titanic Catalyst	AA = Adipic acid	HMA = Hot melt Adhes
a : 1=HDO, 2=EG, 4=BDO, 5=DEG, 6=MPO	EG = Ethylene Glycol	PUD = Water Base PU
b: 0= single diol, 1~6 same as "a"	DEG = Diethylene glycol	PUR = Solvent base P
cd=Mw; 10=Mw1,000 20=Mw2,000 ;;;;;	BDO = 1,4-Butanediol	Block = Block type Plas
End-Mark= D or I or T another Di-Acid complex	MPO = 2-METHYL-1,3-PROPANEDIOL	ISO = pre-Polymer with
	HDO = 1,6-Hexanediol	UV = Ester type acrylic

Applications: HMA = Hot melt Adhesive PUD = Water Base PU Distribution PUR = Solvent base PU Resin Block = Block type Plastic ISO = pre-Polymer with isocyanate end UV = Ester type acrylic oligomer Flexible = Flexible / Soft Foam

列

Viscosity Comparison (@ 25°C)

Composition Mw	MPD Adipate	CA60xx		CA	16хх-і
1,000	1,500	CA6010	3,000	CA1610-i	1,900
2,000	5,700	CA6020	13,000	CA1620-i	9,300
3,000	13,800	CA6030	26,000	CA1630-i	20,500
4,000	28,000	CA6040	76,000	CA1640-i	50,000
5,000	47,000	CA6050	123,000	CA1650-i	94,000

1. There are no difference to compare with other specifications.

- 2. CA-60xx are MPO Adipate Polyols
- 3. We still try to reduce the viscosity in CA-16xx-new
- 4. MPD = 3-Methyl-1,5-pentanediol

Polyol/Copolyol for Applications of PU Foam

CHANDA Polyol for PU Foam												
Product Name	Туре	Mw reference	OH value	Acid Value	Viscosity	Color(APHA)	Applications					
CA5005P	Ester-Ether/Repeat	500	214.0-234.0	1 max	13000 cps @25℃ LVT-SP3	100 max	Rigid foam, thermal resistance					
CA2420-N74	Ester	2,000	53.0-59.0	0.5 max	8400 cps @25℃ LVT-SP3	50 max	Roller, PU scraper					
CA2510	Ester-Ether/Repeat	1,000	106.0-118.0	0.5 max	1900 cps @25℃ LVT-SP2	50 max	Shoe Sole					
CA2520	Ester-Ether/Repeat	2,000	53.0-59.0	0.5 max	7700 cps @25℃ LVT-SP3	50 max	Shoe Sole					
CA5010	Ester-Ether/Repeat	1,000	106.0-118.0	0.5 max	1600 cps @25℃ LVT-SP2	50 max	Shoe Sole					
CA5020	Ester-Ether/Repeat	2,000	53.0-59.0	0.5 max	7200 cps @25℃ LVT-SP3	50 max	Shoe Sole					
CA6010	Ester	1,000	106.0-118.0	0.5 max	3000 cps @25℃ LVT-SP2	50 max	Soft Foam					
CA6020	Ester	2,000	53.0-59.0	0.5 max	13000 cps @25℃ LVT-SP3	50 max	Soft Foam					
CA1610	Ester	1,000	106.0-118.0	0.5 max	1900 cps @25℃ LVT-SP2	50 max	Shoe Sole for High Hydroxy resistence					
CA1620	Ester	2,000	53.0-59.0	0.5 max	7900 cps @25℃ LVT-SP3	50 max	Shoe Sole for High Hydroxy resistence					
CA1610-i	Ester	1,000	106.0-118.0	0.5 max	2100 cps @25℃ LVT-SP2	50 max	Shoe Sole for High Hydroxy resistence					
CA1620-i	Ester	2,000	53.0-59.0	0.5 max	9300 cps @25℃ LVT-SP3	50 max	Shoe Sole for High Hydroxy resistence					
CA6830-F25	Ester	3,000	44.0-50.0	0.5 max	51500 cps @25℃ LVT-SP4	50 max	Semi-rigid Foam, 2.5 Fuctional group					
CT1010	Ester-Ether/Block	2,000	54.0-58.0	0.05 max	280 cps @60℃ LVT-SP1	50 max	Semi-rigid Foam, Anti-shock					
СТ2020	Ester-Ether/Block	4,000	26.0-30.0	0.1 max	1100 cps @60℃ LVT-SP1	100 max	Semi-rigid Foam, Anti-shock					
CP1515-F3	Ester-Ether/Block	3 ,000	54.0-58.0	0.3 max		50 max	Semi-rigid Foam, Triol type					

Polyol/Copolyol for Applications of PU Adhesive

CHANDA Polyol for PUA/PUR												
Product Name	Туре	Mw reference	OH value	Acid Value	Viscosity	Color(APHA)	Applications					
CA4030	Ester	3,000	35 ~ 40	0.5 max	1200 cps @80°C LVT-SP3	50 max	Normal Hot melt adhesive					
CA4040	Ester	4,000	26 ~ 30	0.5 max	2500 cps @80°C LVT-SP3	50 max	Normal Hot melt adhesive					
CA4050	Ester	5,000	20~24	0.5 max	6000cps @80°C LVT-SP2	100 max	Normal Hot melt adhesive					
CA6440-N	Ester	4,000	26 ~ 30	0.5 max	1800 cps @80°C LVT-SP3	50 max	Lower Tg					
CA1035	Ester	3,500	30 ~ 34	0.5 max	1000 cps @80°C LVT-SP2	50 max	High strength					
CA4030D	Ester groups reduced	3,000	35 ~ 40	0.5 max	1100cps @80°C LVT-SP3	100 max	High strength/ Fast setting					
CA1037D	Ester groups reduced	3,700	28.5 ~ 32.5	0.5 max	2000 cps @80°C LVT-SP2	100 max	High hydrolysis resistance, high strength / fast setting					
CA1720	Tiny-Amorphous	2,000		0.5 max		100 max	PUR					
CAC020	Cyclic Hydrocarbon	2,000		0.5 max		100 max	PUR / Toughness					
CA7020PX	Aromatic Hybrid	2,000		2.0 max		300 max	Thermal resistant Adhesive					
TX1117	Aromatic Hybrid	2,500		1.0 max		200 max	Thermal resistant Adhesive					

For the PU Adhesive applications, we would like to suggest customers use our crystal or semi-crystal type Polyols and their Mw should be 3,000 ~ 5,000 or larger.

Above list for customers' reference, however we can design some difference in chemical structure for customers' unique design.

Those factors have to be considered:

- (1) Operation Temperature (Tg, Tm, TS....)
- (2) Polarize / surface tension of matrix
- (3) Film strength / Peeling force
- (4) Reliability / Hydrolysis resistance